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Abstract. Our subject is a new  Catalogue of radar-based heavy Rainfall Events (CatRaRE) over Germany, and how it  

relates  to  the  concurrent  atmospheric  circulation.  We  classify  daily  atmospheric  ERA5  fields  of  convective  indices 

according to CatRaRE, using an array of conventional statistical and more recent machine learning (ML) algorithms, and  

apply them to corresponding fields of simulated present and future atmospheres from the CORDEX project. Due to the  

stochastic nature of ML optimization there is some spread in the results. The ALL-CNN network performs best on average,  

with several learning runs exceeding an Equitable Threat Score (ETS) of 0.52; the single best result was from ResNet with 

ETS = 0.54.  The  best  performing  classical  scheme  was  a  Random  Forest  with  ETS = 0.51.  Regardless  of  the  method, 

increasing trends are predicted for the probability of CatRaRE-type events, from ERA5 as well as from the CORDEX fields.

1 Introduction

Since computing power has grown to levels that were beyond imagination just years ago, automated and numerically  

expensive (machine) learning has evolved into a versatile and capable tool set for data science. This applies in particular to  

Deep Learning (DL), which refers to neural networks with a notably increased number of neuron layers. Many scientists 

are  now curious  whether  their  older,  conventional  models  can stand the test  of  skill  against  these  newer  methods.  

Examples are abundant, for example from climate simulations and weather prediction (daily to seasonal) (Gentine et al., 

2018; Ham et al., 2021, 2019; O’Gorman and Dwyer, 2018; Rasp et al., 2018; Weyn et al., 2021). Generally, DL is evolving 

with such a speed that makes it hard to keep pace; for a general introduction into Deep Learning,  (Bianco et al., 2018; 

Goodfellow et  al.,  2016;  Alzubaidi  et  al.,  2021) provide  a  nice  and  thorough  overview.  At  least  in  the  data  driven 

disciplines, hence, one may be in hope or in fear about the perspective that much of the scientific progress of the past  

several decades is about to be dwarfed by machine learning techniques.

In  this  study  we  aim to  explore  the  potential  of  DL in  the  field  of  atmospheric  weather  types  (classification).  We 

investigate synchronous daily sequences of large- and local-scale weather patterns over Germany. As predictors we use 

reanalyzed atmospheric fields whose spatial resolution is coarse enough to permit long climate model projections. These  

fields are ’labeled’ by the occurrence of local, impact-relevant extreme convective rainfall events anywhere in the study 
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area. The events were obtained from a recently published catalogue of extreme precipitation events in Germany (CatRaRE,  

(Lengfeld et al., 2021)) which in turn is based on a 20-years record of gridded hourly radar-based precipitation estimates 

(RADKLIM, (Winterrath et al., 2018)).

By interpreting each atmospheric field as the color code of a 2-dimensional "image", our task can be framed as one of 

image classification. Given the geometry and resolution of the fields (cf. section 2), the classification is done in a space of 

dimension ~4k. This number roughly compares to some of the classical DL datasets such as MNIST (dim. ~1k) and CIFAR-

10 (dim. ~3k), but is certainly small compared to newer sets such as ImageNet (dim. ~100k) or Open Images (dim. ~5M), cf.  

Table 2. Likewise, while most of the DL networks have to choose between as many as 1000 classes, our initial example is  

just binary. Therefore, if CatRaRE-relevant patterns of atmospheric moisture over Germany can be compared at all to  

images of cats and dogs, one could naively expect a performance that is comparable to published classification results on  

those image datasets.

Our focus shall generally not be on obtaining the best result currently possible, but instead of better understanding the 

influence of the ’deep’ in DL. To that effect, we have explored a number of conventional and newer ’shallow’ methods, and 

compare them to a  selection  of DL networks that, each in  its  time, had  entered the DL arena quite spectacularly; an 

overview of the used methods is given in the Supplemental Information (SI). Our DL framework is Caffe, which provides a  

genuine Octave/Matlab interface to DL  (Jia et al.,  2014). The Caffe framework along with most of the networks have 

already seen the height of their days, and are by now being superseded by more sophisticated and successful networks and 

frameworks (Alzubaidi et al., 2021). This only indicates that the development continues to be fast, making it difficult to  

keep pace. By not trying to keep pace, our focus lies on the historical context and on an understanding of the effects of  

'Depth' on the performance.

After  analyzing  the  performance  of  the  various  methods  and  exploring  the  difference  between  shallow  and  deep 

approaches, the best scoring methods are applied to simulated atmospheres from the EURO-CORDEX project (Jacob et al., 

2020);  the  predicted  classification  can  be  used  to  estimate  past  and  future  changes  in  the  frequency  of  extreme  

precipitation events of the type contained in the CatRaRE catalog.

2 Methods and Data

2.1 Atmospheric data

Since our focus is on convective events, we restrict the analysis to the warmer months from May to August. From the  

ERA5 reanalyses (Hersbach et  al.,  2020),  atmospheric convectivity is  measured by the indices of convective available 

potential energy (cape), convective rainfall (cp), and total column water (tcw). They are used as potential classificators, 

given as daily averages over the area between the edges [5.75E 47.25N] and [15.25E 55.25N], normalized with, for each 

variable, mean and standard deviation across time and space. Future atmospheric fields are obtained from the EURO-
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CORDEX initiative and are simulated by the model CNRM-CM5 (simply "GCM" in this text) driving the regional model  

COSMO-crCLIM ("RCM"). We use emissions from both historic (1951–2005, "HIST") and RCP85 scenarios (2006–2100). The 

atmospheric fields are given as anomalies, using as a general reference state the climatology from the common period 

2001–2020. For the GCM/RCM simulations, for which the simulated climatology is taken as reference, the corresponding 

sections from HIST (2001-2005) and RCP85 (2006-2020) are concatenated.

2.2 CatRaRE

We use the catalogue of radar-based heavy rainfall events  (CatRaRE, Lengfeld et al., 2021), which defines heavy rainfall 

based on the exceedance of thresholds related to warning level 3 (roughly 5-year return level 1) of Germany’s national 

meteorological  service (Deutscher Wetterdienst;  DWD hereafter);  it  corresponds to more than 25 mm in one hour or 

35 mm  in  six  hours.  Based  on  threshold 

exceedance  of  individual  radar  pixels,  heavy 

rainfall  objects  are  constructed  that  are 

contiguous in space and time, and for which an 

extremity index (ET,A, Müller and Kaspar (2014)) 

is inferred that is a combined measure of area, 

duration and intensity.  In this study, a day is 

labeled as  extreme if the database contains an 

event of at most 9 hours duration on that day; 

it  means  that  somewhere  in  Germany  a 

corresponding  severe  weather  was  recorded, 

and  the  limited  duration  serves  as  a  rough 

proxy that the event was convective.

On average, 51% of the (May–Aug) days see an 

extreme event somewhere in Germany, which 

means  that,  although  CatRaRE  events  are 

locally  rare  by  definition,  the  main 

classification  task  (event  vs.  no  event  in 

Germany)  is  quite  balanced.  Mainly  for  later 

use we counter any potential class imbalance 

nevertheless,  and  employ  a  rather  simplistic 

1 Given that of the total of 175200 = 20×365×24 hours from 2001 to 2020, about 27000 are listed as extreme, the likelihood of seeing any 
extreme event in Germany is pG = 27000/175200 = 15%. The average size (in pixels) of a CatRaRE event is a=133, while all of Germany 
covers aG=900×1100 = 990000 pixels. If all CatRaRE events can be taken as independent, then the probability of an event per pixel is 
p = 1−(1−pG )aG /a = 2.25×10−5

, which roughly corresponds to a return period of 5 years.
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Figure 1. The conditions for cape on July 28, 2014 (blue), along with ET,A 

values of corresponding CatRaRE events of ≤9h duration (dots).
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oversampling approach by populating the minority class with random duplicates of that class until that class is no longer  

minor.

The ERA5 grid is shown in Figure 1, along with the average cape values for 28 July 2014. It was a day with particularly 

strong atmospheric convectivity, which led to several severe rainfall events all over Germany, as monitored by CatRaRE,  

so that the day is labeled as extreme. Two active regions are visible, one in the Southwest and one in the central West.  

There, in the city of Münster, occurred the most disastrous event, with one station recording as much as 292 l/m² within 7  

hours (Spekkers et al., 2017) The surrounding cape grids show values > 600 J/kg, similar to other areas in Germany (SE, 

NE).

2.3 Conventional (“Shallow”) and Deep Learning models

Table 1. The Shallow-Learning methods.

abbr. note

Lasso regression LASSO cross-validated penalty (McIlhagga, 2016)

random forests TREE 50 trees (Jekabsons, 2016)

shallow neural nnet NNET 2 hidden layers with 7 and 3 neurons Octave

logistic regression NLS nonlinear least squares Octave

As competitive benchmarks to DL models, we employ four shallow statistical models: Lasso logistic regression (LASSO), 

random forests (TREE), and a simple neural net with 2 hidden layers (NNET); all of these are applied with and without  

Empirical  Orthogonal  Functions  (EOF)  orthogonalization;  more  details  are  listed  in  Table  1 and  in  the  source  code 

mentioned at the end. The architectures of the selected DL models are almost exclusively based on convolutional neural 

networks (CNNs),  a  concept  that  was  introduced  with  the  famous  LeNet-5  model  of  (LeCun  et  al.,  1989) for  the 

classification of handwritten zip codes. Besides LeNet-5 we use the network architectures AlexNet, ALL-CNN, GoogLeNet,  

DenseNet, and ResNet. These were created for the classification of digitized images, such as the CIFAR-10 set with 32×32  

image resolution and 10 classes or ImageNet with 256×256 images covering 1000 classes, and regularly used in annual 

image classification contests  since  about  2010  (Krizhevsky et  al.,  2017).  Along with these  come two quite  simplistic 

benchmark networks, Simple representing a single convolutional and a dense layer, and Logreg with just one single dense 

layer; details are provided by Table 2 and the SI. This provides a fairly comprehensive selection from the most simple to  

highly  sophisticated  networks.  The  corresponding  model  implementations  can  be  inspected  at  

https://gitlab.dkrz.de/b324017/carlofff. Training and deployment of DL models is performed using the  Caffe framework 

with its Octave interface (https://github.com/BVLC/caffe).
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Table 2. The Deep-Learning architectures. The number of classes pertains to the reference study.

Year resolution layers2 Reference Original classes

LeNet-5 1989 28×28 4 (LeCun et al., 1989) 10

AlexNet 2012 227×227 8 (Krizhevsky et al., 2017) 1000

CIFAR-10 2014 32×32 4 (Krizhevsky et al., 2017) 10

ALL-CNN 2014 32×32 9 (Springenberg et al., 2014) 10

GoogLeNet 2014 224×224 76 (Szegedy et al., 2015) 1000

ResNet 2016 32×32 22 (He et al., 2016) 10

DenseNet 2016 32×32 159 (Huang et al., 2017) 10

Simple 32×32 3 this paper 2

Logreg 32×32 1 this paper 2

Compared to the original DL classification tasks in the literature, with e. g. 1000 classes for AlexNet and GoogLeNet, cf. 

Table 2, our classification in its initial form is just binary, so naturally some of the network and solver parameters had to 

be adjusted. A crucial “hyperparameter” is the size of the training and testing batches (batch_size in Caffe), which had to 

be lowered for the broader and deeper networks. Another parameter is maximum iteration (max_iter); unless that number 

is reduced drastically the optimization would enter a runaway overfitting process whose emergence is barely visible. The  

learning rate decay policy poly, which basically required a single parameter power, helped to steer the learning process in 

a parsimonious way; it was used for all DL solvers. All adjusted parameters are listed in Table S1 from the SI.

Because DL optimization generally uses a stochastic gradient descent algorithm and is therefore not fully deterministic,  

we use an ensemble of 20 DL optimization runs. This ensemble, too, is informative about network convergence, and in  

some cases even reveals potential for refined parameter tuning. All relevant details are described in the SI, section 2.

The predictor fields of cape, tcw, and cp are taken as three ’color channels’ (RGB) of an image sequence. Because the image 

resolution differs between the networks, varying from 28×28 pixels for LeNet-5 to 227×227 pixels for AlexNet, a regridding 

of the fields is required to match the resolution of the original model, cf. Table 2. Except for LeNet-5, this represents an 

upsampling so that  the pattern itself  (its  shape)  enters  the DL essentially  unchanged (and the LeNet-5 resolution is 

sufficiently similar). EOF truncation was consequently not applied to the DL models.

2 We only count convolutional and fully connected (inner product) layers
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2.4 Calibration, Validation

The  full  period  from  2001  to  2020 

amounts to a total of 2460 days, which 

we  split  into  a  calibration  (train)  and 

validation (test) period of 2001–2010 and 

2011–2020,  respectively.  For  the  DL 

training, cross-entropy is used as a loss 

function.  As  evaluation  measure  the 

Equitable Threat Score (ETS, syn. Gilbert 

Skill  Score)  is  used.  ETS  measures  the 

rate  of  correctly  forecast  extremes 

relative to all  forecasts except majority 

class hits, and adjusted for random hits. 

We note that the validation data are not 

completely independent of the DL models. Because they have been used for inspecting the learning curves and their  

convergence, there is a slight chance that the validation scores may reflect sampling properties and would therefore not 

generalize. On the other hand, the tuning goal was to achieve reasonable convergence of the loss function and not to  

minimize its value. Therefore, we are confident that overfitting is reasonably limited.

3 Results and discussion

Convergence  of  the  DL  model  optimization  is  exemplarily  shown  in  Figure 2,  which  depicts  the  loss  function 

(crossentropy) during the learning and testing iterations. LeNet-5 follows a typical path of learning progress, with variable 

but decreasing loss for the training phase that is closely and smoothly traced by the testing phase, the latter leveling out  

somewhat below a loss of 0.4. The learning curves of the other networks look similar but with different absolute losses,  

and are shown in Figure 3. It is noticeable that e. g. ResNet converges after only 40 iterations whereas AlexNet and ALL-

CNN require,  respectively, 500 and 1000 iterations. Also note that the simpler networks such as Simple, Logreg, and  

CIFAR-10 remain stable after reaching convergence while, what is not shown in the Figure, the more complex networks  

AlexNet, GoogLeNet and ALL-CNN do not and start to diverge, indicative of overfitting.
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Figure 2. Learning curve of the LeNet-5 network, with crossentropy as loss. Iter-
ations indicate the number of batch passes (batch size 100).
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Overall model performance when driven by ERA5 fields from the validation period 2011–2020 is shown in Figure 4. First, 

it demonstrates the positive effect of using cape as a predictor, which improves skill across all models. Another distinction  

for the classical (”shallow”) methods is the use of an EOF reduction of the predictor fields prior to the model fit; except for  

the (shallow) neural net the effect is positive. The best overall performance is achieved by the ALL-CNN network with a  

mean  ETS of  0.52, followed by Random Forests (TREE) with  ETS = 0.51. For logistic regression (NLS), EOF reduction is 

indispensible as it otherwise leads to heavy overfitting; the neural net (NNET), on the other hand, profits from using the  

original instead of the reduced fields as predictors. The scatter of DL model skill, crossentropy vs. ETS, that is visible 

especially for the more complex models is indicative of some residual underfitting that we have not been able to resolve.  

But the cloud tilt is obvious, with more variation along the ETS axis. That this is not a simple scaling issue can be seen for  

the  Logreg  network,  whose  optimized  crossentropy  values,  unlike  the  other  networks,  show  virtually  no  variation 

compared to the ETS. Crossentropy as a loss function, so it  appears,  sufficiently dictates unique convergence for the 

training phase, but apparently does not sufficiently constrain the models to make good predictions for the testing phase.  

Note that all DL results are, technically, stochastic due to the stochastic nature of the optimizer. We are not aware of a  

more systematic discussion in the DL community addressing this kind of uncertainty, cf. e.  g. Kratzert et al.  (2019). It is 

therefore somewhat unclear how to interpret the role of, for example, the one ResNet run with ETS ~ 0.54 that marks the 

best result of all. In the following DL applications the ETS-optimal ensemble member is used.
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Figure 3. As Figure 2, for the other DL networks.
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We now apply the trained models to the observed (reanalyzed) and simulated atmospheric fields. It means we obtain for  

each summer day from the corresponding atmospheric model period a prediction expressing the probability of a CatRaRE-

type event happening somewhere over Germany. Starting with the ERA5 reanalyses, we check whether the July 2014  

event is captured by the ERA5 fields. Figure 5 shows a typical probability forecast from the DL model LeNet-5. During the 

days  in  late  July  of  2014,  there  is 

permanent  convective  activity  over 

Germany.  LeNet-5  shows  near-

certainty  predictions  for  events  to 

occur,  including  the  July  29  extreme 

event. Sporadic periods of little activity 

are also well reflected by LeNet-5.
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Figure 4. Model performance for the validation period 2011–2020. Left: ETS with and without cape as a predictor. Right: Re-
lation between ETS and crossentropy (both with cape). Squares depict Shallow, diamonds Deep models. Unfilled markers in  
the left panel symbolize no EOF truncation. NLS without EOF truncation is outside of range.
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For a broader temporal picture, we form annual (i. e. May–Aug) averages of the daily probabilities, and display the entire 

reanalysis period (1979–2020) in Figure 6. The classification is obtained by the best-scoring models ALL-CNN and TREE. 

The observed CatRaRE climatology (2001–2020) shows a mean daily probability of 0.51, and it is well reproduced by both 

models. Both models, moreover, reveal a significantly positive trend, with probabilities about 0.1 higher at the end of the 

period. (A linear trend is obviously only partly meaningful for a bounded quantity such as probability, but we use it here  

nevertheless.) Annual correlations are stronger for ALL-CNN (0.65 compared to 0.64 for TREE); corresponding plots for all  

other models are all very similar and are, for completeness, shown in Figs. S3 and S4; see also Table 3. Interestingly, of all 

models the most simple one, NLS, reveals the highest annual correlation of 0.69 with observations.

Now we analyze the CatRaRE classifications for the simulated atmospheres from past to future (1951–2100). Again, we 

first turn to the overall best performing models ALL-CNN and TREE, as shown in Figure 7. For TREE there is a noticeable 

negative bias of CatRaRE probabilities for the simulated future (2006–2100); ALL-CNN appears to be relatively unbiased. 

The TREE trends are not significant, while ALL-CNN exhibits significantly positive trends for both HIST (0.12/100y) and 

RCP85 (0.06/100y). For the other methods the results are similar, as shown in Figs. S5 and S6, and listed in Table 3. It shows 

that  essentially  all  methods  consistently  produce  similar  results,  with  slight  variations  in  skill,  bias,  and trend.  The 

obtained trends for the ERA5-derived CatRaRE probabilities are all fairly large and significantly positive. Interestingly, like 

in Figure 7, HIST trends are significantly positive for all DL models but from the Shallow methods only for TREE. Almost 

9

Figure 6. Annual values of the probability P of CatRaRE-type events, as observed (crosses) or simulated from ERA5 (dots),  
using TREE (top) and ALL-CNN (bottom); the calibration period is marked as green and the rest as blue. The full ERA5 time  
period reveals a significantly positive trend for both models, displayed as ΔP/100y; observed 2001–2020 climatology (gray 
dashed) is given for reference. The scatterplots on the right-hand side depict the same data as a scatterplot against observa-
tions, with correlations for the validation period.
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all RCP85 trends are significantly positive, but their size is roughly half of the HIST trends. This may have to do with the  

limited probability domain ([0 1]) and a corresponding saturation towards the maximum.

4 Conclusions

We have classified ERA5 fields of atmospheric convectivity with respect to the occurrence of heavy rainfall events over  

Germany (based on the recently published CatRaRE catalog), using an array of classical (’shallow’) and deep learning 

methods. The methods ranged from very basic logistic functions to shallow neural nets, random forests (TREE) and other  

machine learning techniques, including the most complex deep learning (DL) architectures that were available to us.  

Because of the rapid progress in DL, it still means we are at least 5 years behind the state-of-the-art. Of the classical  

schemes, TREE performed best with an ETS score of 0.51 for the independent decade 2011–2020. Of the DL schemes, 

which have a stochastic component from their stochastic gradient optimizer, the overall best network was ALL-CNN with  

ETS = 0.52, but some runs of ResNet even approached ETS scores of 0.54.
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Figure 7. Similar to Figure 6, as simulated by GCM/RCM, for historic (blue) and future (red) emissions. For reference, the 
observed 2001–2020 climatology is also shown (CLIM, gray dashed).
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Table 3. Summary table of ETS, trends and correlations for all methods. Significant trends are boldface. For the DL meth-
ods, the ETS ensemble mean and max is shown. Best ETS-scoring methods are blue.

model ETS model (ERA5) ↔ OBS

annual correlation

centennial increase

mean max ERA5

(1979–2020)

HIST

(1951–2005)

RCP85

(2006–2100)

LASSO 0.49 0.54 0.22 0.10 0.07

TREE 0.52 0.64 0.30 0.09 0.03

NNET 0.42 0.64 0.24 0.10 0.07

NLS 0.44 0.69 0.28 0.11 0.04

LeNet-5 0.51 0.52 0.58 0.22 0.10 0.07

AlexNet 0.49 0.52 0.60 0.25 0.11 0.06

CIFAR-10 0.49 0.51 0.40 0.24 0.11 0.09

ALL-CNN 0.52 0.54 0.65 0.30 0.12 0.06

GoogLeNet 0.50 0.53 0.49 0.25 0.11 0.06

ResNet 0.51 0.54 0.62 0.26 0.11 0.03

DenseNet 0.49 0.52 0.54 0.32 0.12 0.07

Simple 0.50 0.51 0.46 0.22 0.10 0.08

Logreg 0.44 0.45 0.54 0.21 0.10 0.11

The classificators were then applied to corresponding CORDEX simulations of present and future atmospheric fields. The 

resulting probabilities of CatRaRE-type extreme events were increasing during the ERA5 period and also for the historic 

and  future  simulations,  almost  independent  of  the  methods  used.  Measured  as  centennial  change,  ERA5-generated 

probability increases by about 0.2, and this number is roughly halfed for the historic and once more halfed for the future  

CORDEX period. It remains unclear whether the smaller HIST rates have a real physical origin or derive from modeling  

inadequacies; the smaller RCP85 rates may partly be explained by a saturation effect towards maximum probability. That 

all probabilities increase is to be expected and in line with common wisdom of current climate research (cf. Figure SPM.6, 

Masson-Delmotte et al., 2021).

Compared to other classification problems such as the notorious image classification contest ImageNet, our setup of a  

binary classification is quite simple. One must keep in mind, however, that the very design of CNNs, with their focus on  

’features’ of colored shapes (objects), is modeled along the lines of ImageNet and relatives. Applying a CNN to other, not  
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object-like ’images’ (blurred boundaries and colors) is not guaranteed to work out of the box. But it does, as we have seen,  

with only moderate adjustments. The main difficulty here was to understand just how much quicker the more complex  

models would learn, so that we had to shorten their learning period considerably to avoid overfitting.

Our study is meant as a starting point for a number of refinements, with the ultimate goal of classifying and projecting  

impact-relevant convective rainfall events for as small a region as the setting allows. So far the only criterion to isolate  

convective events from the CatRaRE database was their duration (here 9 hours). By considering more than two classes,  

e. g. by introducing more regional and temporal detail, or more levels of intensity, the full power of CNNs, and here  

perhaps of ALL-CNN or ResNet,  could be exploited. The atmospheric predictor fields,  likewise, were so far relatively  

simple: with local indicators of convectivity (cape, tcw, cp) whose effect can mostly be understood on a gridpoint level, the  

underlying statistical problem is, except for the EOF filters, essentially univariate. Using truly multivariate, pattern-based 

atmospheric predictors, such as moisture convergence or vorticity, can foster the performance especially of CNNs with 

their feature extracting capabilities. It is hoped that with all these refinements the DL methods, which are designed to  

handle considerably more complex classification targets, remain sufficiently reliable.

Getting back to the initial question, our conclusions entail in passing that for this study, like for so many others, machine  

learning methods are surpassing the conventional (’shallow’) statistical toolbox. It will be interesting to see whether this 

also applies to state-of-the-art dynamical models. In other words, how does the development of convection-permitting 

dynamical models (e. g. Kendon et al., 2021) compare to DL-based convection schemes (e. g. Pan et al., 2019)? And why 

should their integration not offer the best of both worlds in one (Wang and Yu, 2022; Willard et al., 2022)?

5 Code availability

The relevant code underlying this paper can be found at https://gitlab.dkrz.de/b324017/carlofff.
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